TOSHIBA Transistor Silicon NPN Epitaxial Planar Type

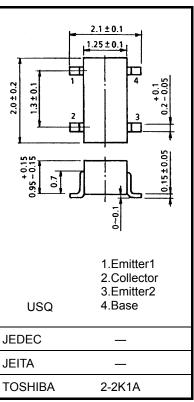
2SC5088

VHF~UHF Band Low Noise Amplifier Applications

Unit: mm

- Low noise figure, high gain.
- NF = 1.1dB, $|S_{21e}|^2 = 13dB$ (f = 1 GHz)

Absolute Maximum Ratings (Ta = 25°C)


Characteristics	Symbol	Rating	Unit	
Collector-base voltage	V_{CBO}	20	V	
Collector-emitter voltage	V _{CEO}	12	V	
Emitter-base voltage	V _{EBO}	3	V	
Base current	ΙΒ	40	mA	
Collector current	IC	80	mA	
Collector power dissipation	PC	100	mW	
Junction temperature	Tj	125	°C	
Storage temperature range	T _{stg}	-55~125	°C	

Note:

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

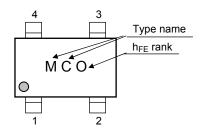
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/

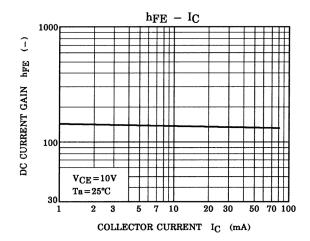
"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

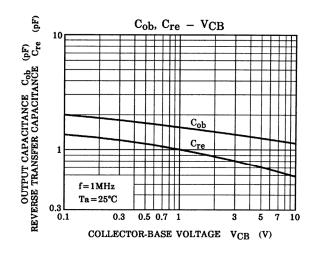
Weight: 0.006 g (typ.)

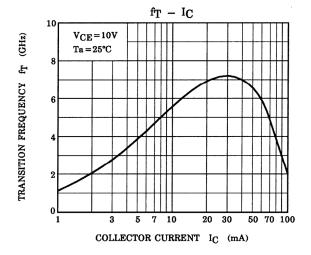
Microwave Characteristics (Ta = 25°C)

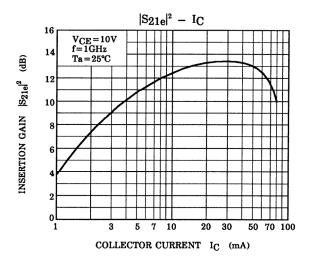
Characteristics Symbol		Test Condition	Min	Тур.	Max	Unit
Transition frequency	f _T	V _{CE} = 10 V, I _C = 20 mA	5	7	_	GHz
Insertion gain	S _{21e} ² (1)	(1) $V_{CE} = 10 \text{ V}, I_{C} = 20 \text{ mA}, f = 500 \text{ MHz}$		18	_	dB
	S _{21e} ² (2)	$_{\rm e}$ $^{(2)}$ $V_{\rm CE} = 10 \text{ V}, I_{\rm C} = 20 \text{ mA}, f = 1 \text{ GHz}$ 9.5				uБ
Noise figure	NF (1)	V _{CE} = 10 V, I _C = 5 mA, f = 500 MHz	_	1	_	dB
Noise liguie	NF (2)	V _{CE} = 10 V, I _C = 5 mA, f = 1 GHz	_	1.1	2	uБ

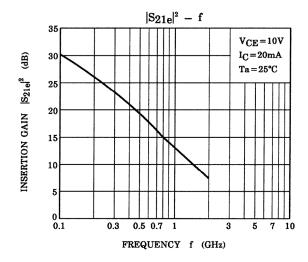

Electrical Characteristics (Ta = 25°C)

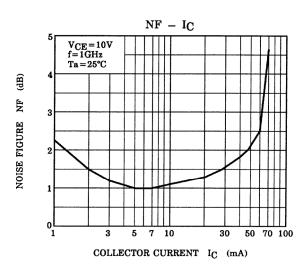

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Collector cut-off current	I _{CBO}	$V_{CB} = 10 \text{ V}, I_{E} = 0$	_	_	1	μА
Emitter cut-off current	I _{EBO}	V _{EB} = 1 V, I _C = 0		_	1	μА
DC current gain	h _{FE} (Note 1)	V _{CE} = 10 V, I _C = 20 mA	80	_	240	
Output capacitance	C _{ob}	V _{CB} = 10 V, I _E = 0, f = 1 MHz (Note 2)	_	1.1	1.6	pF
Reverse transfer capacitance	C _{re}	$\frac{1}{2}$ $\frac{1}$		0.65	1.05	pF

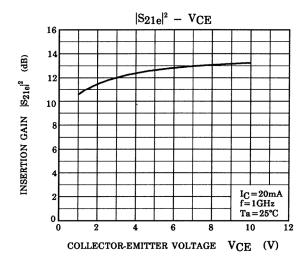

Note 1: hFE classification O: 80~160, Y: 120~240

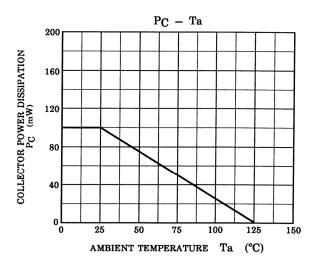

Note 2: C_{re} is measured by 3 terminal method with capacitance bridge.


Marking





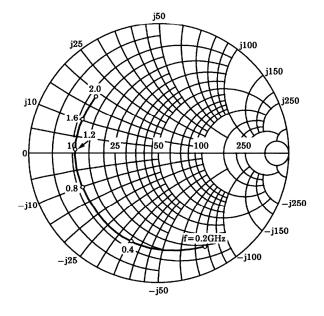


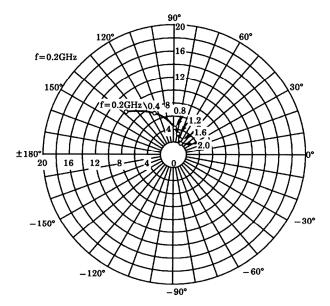


S-Parameter $Z_O = 50 \Omega$, $Ta = 25^{\circ}C$

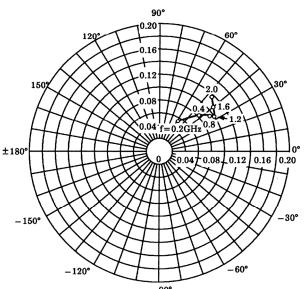
$V_{CE} = 10 \text{ V}, I_C = 5 \text{ mA}$

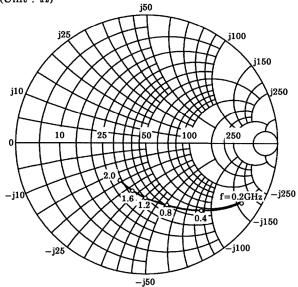
Frequency	S11		S21		S12		S22	
(MHz)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
200	0.826	-64.3	9.839	139.2	0.056	59.2	0.844	-31.7
400	0.735	-106.8	7.058	115.2	0.083	43.8	0.663	-50.1
600	0.692	-134.4	5.233	99.5	0.094	36.8	0.558	-62.3
800	0.666	-154.3	4.106	88.1	0.100	33.3	0.496	-72.6
1000	0.656	-170.0	3.315	78.9	0.102	32.7	0.458	-81.8
1200	0.653	178.0	2.768	71.3	0.103	33.4	0.429	-90.6
1400	0.649	167.7	2.353	65.4	0.104	36.0	0.407	-99.4
1600	0.655	158.2	2.061	59.6	0.107	39.1	0.393	-107.8
1800	0.653	149.0	1.818	55.3	0.111	42.6	0.378	-115.3
2000	0.654	139.9	1.650	50.7	0.116	46.7	0.367	-121.9


$V_{CE} = 10 \text{ V}, I_C = 20 \text{ mA}$

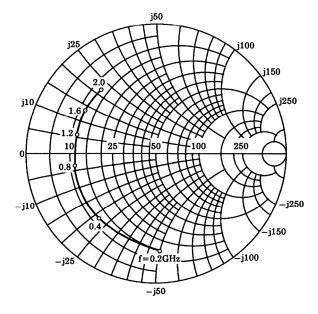

Frequency	equency S11		S21		S12		S22	
(MHz)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
200	0.747	-87.0	16.492	129.8	0.048	52.1	0.717	-47.1
400	0.675	-130.5	10.431	106.5	0.063	41.8	0.486	-69.1
600	0.648	-154.8	7.298	93.5	0.070	40.8	0.379	-82.0
800	0.636	-170.9	5.547	84.4	0.076	42.0	0.324	-93.0
1000	0.630	176.7	4.423	77.5	0.083	44.7	0.291	-102.7
1200	0.634	166.4	3.660	71.7	0.089	47.7	0.266	-112.1
1400	0.634	157.1	3.125	67.0	0.097	50.8	0.249	-120.8
1600	0.639	148.8	2.741	62.4	0.105	53.2	0.233	-128.9
1800	0.645	139.9	2.451	58.8	0.115	55.6	0.220	-135.8
2000	0.642	131.4	2.233	54.9	0.126	58.1	0.205	-141.2

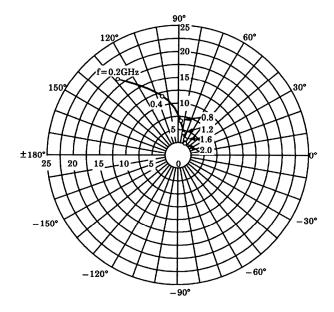
4 2007-11-01

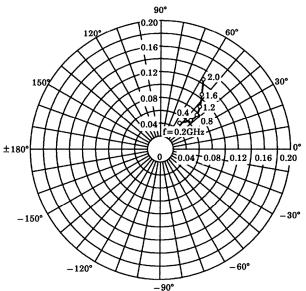

 $\begin{array}{l} S_{11e} \\ V_{CE} = 10V \\ I_{C} = 5 \text{mA} \\ Ta = 25 ^{\circ}C \\ (Unit: \Omega) \end{array}$

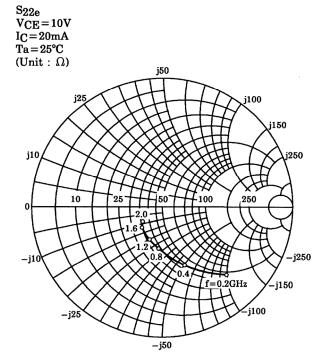


 $\begin{array}{l} S_{12e} \\ V_{CE} = 10V \\ I_{C} = 5 mA \\ Ta = 25 ^{\circ}C \end{array}$


S22e VCE=10V IC=5mA $Ta=25^{\circ}C$ $(Unit:\Omega)$


5


 $\begin{array}{l} S_{11e} \\ V_{CE} = 10V \\ I_{C} = 20mA \\ Ta = 25^{\circ}C \\ (Unit: \Omega) \end{array}$



 $\begin{array}{l} S_{12e} \\ V_{CE} = 10V \\ I_{C} = 20 mA \\ Ta = 25 ^{\circ}C \end{array}$

6

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.